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Abstract. In the framework of the dipole picture of the BFKL pomeron we discuss two possibilities of
calculating the total γ?γ? cross section of the virtual photons. It is shown that the dipole model reproduces
the results obtained earlier from kT -factorization up to the selection of the scale determining the length
of the QCD cascade. The choice of scale turns out to be important for the numerical outcome of the
calculations.

1 Introduction

Testing the BFKL pomeron through collisions of tagged
e+e− pairs with very large momentum transfers is an at-
tractive possibility which has already been discussed in
[1,2]. Clearly, the crucial ingredient in the expression for
the e+e− total cross section at fixed Q2

A, Q
2
B momentum

transfers of the tagged leptons is the total cross section of
two virtual photons of “masses” Q2

A and Q2
B . Calculation

of this cross section, σγγ , is basic for the content of [1,2].
Here, we present a method of calculating σγγ , alterna-

tive to the one presented in [1] and [2], which is an im-
plementation of the dipole picture of the BFKL pomeron
proposed in [3–6]. This implementation goes somewhat
beyond the applications of the dipole picture given in [7–
12] and is based on a discussion of the scale relevant in
collisions of highly asymmetric q-q̄ configurations of light
quarks within the framework of Mueller’s QCD dipole pic-
ture [13].

We start with the forward onium-onium amplitude for
a single pomeron exchange, F (1), which we calculated ab
initio. We believe that this new expression is better than
the one used in [9–12]. Its detailed derivation is given in
Appendix A and the result is

F (1) = πα2rArB

∫
dγ

2πi
e∆(γ)Y

(
rA
rB

)γ−1

h(γ) . (1)

Here α is the strong coupling constant, N is the number
of colors, rA and rB are the transverse sizes of the two
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colliding onia, ∆(γ) = αNχ(γ)/π where

χ(γ) = 2ψ(1)−ψ(1− 1
2γ)−ψ( 1

2γ)
(
ψ ≡ d logΓ

dγ

)
(2)

and

h(γ) =
4

γ2(2 − γ)2
. (3)

The quantity

Y = log
(
s

s0

)
(4)

is the total length of the dipole cascade, i.e., the sum of
the cascade lengths of the two colliding onia. s is the total
c.m. energy of the collision and s0 is the relevant scale of
the problem. s0 cannot be calculated within the leading
logarithmic approximation and therefore it remains an un-
known element in this approach. Its determination must
rely on one’s physical intuition and on results of a phe-
nomenological analysis of data. In the present paper we
explore the consequences of the choice suggested by the
dipole picture [13].

While (1) reproduces the saddle point approximation
of F (1) derived in [3–5] (and employed in [9–12]), it also
contains contributions which are neglected in the con-
tour integral representations of F (1) used in [9–12]. In
other words, in [9–12], those components of the integrand
which become unity at the saddle point, are kept equal
one throughout the whole contour integration. This ap-
proximation has been corrected in our present expression
for F (1).

The way to employ the dipole picture to calculate the
total γ?γ? cross section is, in principle, straightforward.
From F (1) and the well known (compare, e.g., [6,10,12,
14]) wave functions of the two photons, A and B, of the
virtual masses QA,B , longitudinally (L) or transversely
(T ) polarized, ΨL,T (rA,B , zA,B ;QA,B), we obtain the for-
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ward γ?γ? amplitude

Fγγ =
∫

|ΨL,T (rA, zA;QA)|2 (5)

×|ΨL,T (rB , zB ;QB)|2 F (1)d2rA dzA d
2rB dzB ,

and the total cross section which, with our conventions,
reads

σγγ = 2 ReFγγ . (6)

Then, in order to evaluate the integral in (5), we have
to decide what to take for Y , the length of the cascade.
According to (4) this amounts to a selection of the scale
s0. Two choices were discussed in the literature. In [1] s0
was taken as

s0 = cQAQB , (7)

with c = 100. This apparently natural choice has an at-
tractive feature to be a simple analytic function of QA and
QB . Another possibility [7] was to take

s0 = cQ2
> , (8)

where Q> is the larger of QA, QB . This gives

Y = log
(

1
cxBj

)
, (9)

a formula which provided an excellent fit to the proton
structure function at small xBj [7,8]1.

Following [13] we observe, however, that from the point
of view of the dipole picture neither (7) nor (8) is really
satisfactory. The point is that (1) refers to collisions of two
dipoles and thus the relevant scale s0 must be expressed in
term of the parameters characterizing these dipoles (i.e.,
longitudinal momenta zA, zB and transverse sizes rA , rB)
rather than QA and QB . This is clear if one observes
that QA and QB are not even defined in (1). The pos-
sible choices of s0 consistent with the dipole picture were
discussed in [13], where also a definite formula for Y was
suggested. In the present paper we explore consequences
of this choice for σγγ and compare it with the results fol-
lowing from (7) and (8). We hope that our results shall be
useful in testing the validity of the dipole picture approach
in the small xBj physics.

In the next section we present our formulae for σγγ

following from Y worked out in [13]. In Sect. 3 we give our
numerical results and their discussion. Sect. 4 contains the
conclusions. Appendix A presents a detailed derivation of
the formula (1), in Appendix B we calculate σγγ for three
factorizable forms of Y defined by: (13), (7), and (8). The
case (7) gives σγγ of [1] whereas the last one, (8), results
in σγγ which follows from the version of the dipole picture
implemented in [7].

1 Note that (7) and (8) give rather different results for Q2

dependence of γ − γ cross section which should not be too
difficult to test once the relevant data are available

2 The total γ?-γ? cross section

In this section we derive the formulae for the total cross
section of two virtual gammas using the formula (1) for
onium-onium forward amplitude derived in Appendix A,
with Y taken from [13]

Y = yA + yB = log
(
sz<

Az
<
Br

2
Ar

2
B

cτ2
int

)
, (10)

where c is the arbitrary constant of the leading log ap-
proximation, s = 4EAEB is the square of the total c.m.
energy of the colliding virtual photons,

z< =
{
z if z ≤ 1

2
1 − z if z ≥ 1

2 ,
(11)

and
τint = const r> (12)

where r> is the larger of rA and rB . τint is interpreted
(see [13]) as the time needed for the exchanged gluons to
travel the necessary distance in the transverse space.

We will confront the results obtained with (12) with
the ones one gets replacing (12) by a symmetric expression

τ2
int → τ2 = rArB (13)

which leads to formulae close to the ones advocated in [1,
2].

To get γ?−γ? amplitude we employ now the wave func-
tions of the virtual photons, Ψ(rA, zA;QA), Ψ(rB , zB ;QB),
and calculate Fγγ of (5), where for the transverse (T ) and
longitudinal (L) photons we have (compare [6,10,12,14])

|ΨT,L(r, z;Q)|2 = ΦT,L(r, z;Q) =
Nαeme

2
f

π2 WT,L(r, z;Q) ,

(14)
WT (r, z;Q) = 1

2 [z2 + (1 − z)2]Q̂2K2
1 (Q̂r) , (15)

WL(r, z;Q) = 2z(1 − z)Q̂2K2
0 (Q̂r) , (16)

where Q̂ =
√
z(1 − z)Q, αem = 1/137 and e2f = 2/3 (the

sum of the squares of the charges of three quarks).
Inserting (10) into (1) and employing (5) we obtain for

the total γ?γ? cross section

σγγ = 4(2π)3α2
∫ ∞

0
drAr

2
A

∫ 1
2

0
dzAΦ

T,L(zA, rA;QA)

×
∫ ∞

0
drBr

2
B

∫ 1
2

0
dzBΦ

T,L(zB , rB ;QB)

×
∫

dγ

2πi
e∆(γ)Y

(
rA
rB

)1−γ

h(γ) , (17)

where Y = log ξ and ξ = (sz<
Az

<
Br

2
Ar

2
B/(cτ

2
int)). Note that

since ΦT and ΦL are invariant against the replacements:
zA,B → (1−zA,B) and (1−zA,B) → zA,B , we can drop the
< superscripts and integrate over z’s as follows

∫ 1
0 dz →

2
∫ 1/2
0 dz .
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The expression (17) is comparatively easy to evaluate
when, as in (13), τ2

int → τ2 = rArB (the case close to the
one of [1,2]) because the integrals factorize into integrals
over the A and B variables, the integrations over rA and
rB can be done analytically and we obtain

σγγ =
8
π

(αNαeme
2
f )2

1
QAQB

(18)

×
∫

dγ

2πi

(
s

cQAQB

)∆(γ)(
QB

QA

)1−γ

h(γ)HL,T (γ) ,

where HL,T = 4∆(γ)ZL,T (γ)SL,T (γ)ZL,T (2 − γ)SL,T (2 −
γ) is the product of the functions of γ defined in the Ap-
pendix B.

In the case of (12), however, there is no factorization
and one has to face a 5-dimensional integration with one
of the integrals being a contour integral in the complex
plane γ (along a straight line parallel to the imaginary
axis). This forces us to use a numerical method for the
evaluation of (17). It turns out (see the discussion of our
results below) that in the very high energy limit (s/c very
large) one can safely use the saddle point approximation
for the contour integral

∫
dγ

2πi
e∆(γ)Y

(
rA
rB

)1−γ

h(γ)

= 1
2

√
2aξ

π
h(γ0)ξ∆pe− 1

2aξ log2(rA/rB) , (19)

with Y = log ξ, ξ = s/s0, with s0 as the case might be (see
above), aξ = [7αNζ(3) log(ξ)/π]−1 and ∆p = αN

π χ(1).
γ0 = 1 − aξ log(rA/rB) is the saddle point which, in the
limit s/c → ∞, equals 1. Then the numerical integration
reduces to 4 dimensions. Note that (19) exhibits the source
of the substantial difference in dependences on QB/QA

following from (7) and (8), see Fig. 2. This difference sits
in the ξ∆p factor:

(
s

cQAQB

)∆p

against
(

s

cQ2
>

)∆p

. (20)

3 Numerical results and discussion

We considered 4 cases of Y = log(s/s0) and calculated the
corresponding cross sections:

(a) The case of (7), s0 = c(a)QAQB , employed in [1,2],
(b) the case of (8), s0 = c(b)Q

2
>, employed in [7],

(c) the case of (12), s0 = (c(c)r2>/(z
<
Az

<
Br

2
Ar

2
B)), discussed

in [13],
(d) the case of (13), s0 = (c(d)/(z<

Az
<
BrArB)), discussed

also in [13].

Comments: As shown in Appendix B, in the Case (a) we
obtain the same formula for σγγ as in [1]. Also let us note
that, when QA = QB and the arbitrary constants are set
to the same value c(a) = c(b) = c, the σ’s for Case (a) and
Case (b) are identical.

The Cases (a)–(d) were calculated in the saddle point
approximation given by the formula (19) and subsequent
4-dimensional integration. In Cases (a), (b) and (d), we
checked the accuracy of this procedure calculating σγγ an-
alytically up to the final contour integration over γ which
was done with the help of MATHEMATICA. It turned out
that the results of these two procedures agree to within
15 percent.

In order to exhibit the asymmetries when QA 6= QB

we introduced the asymmetry parameter, ζ, defined as

ζ =
QB

QA
. (21)

From the asymptotic forms (56) and (64) we see that the
asymmetry in QA, QB in Cases (a) and (d) is given ap-
proximately by the factor

e− 1
2aξ log2(ζ). (22)

In the (b) and (c) cases, especially in Case (b), this esti-
mate is not good enough.

Clearly, the choices of the values of the arbitrary con-
stant c involved in all Y ’s discussed in this paper are very
important in determining the size of the cross section.
They can either be fitted to experimental results (com-
pare [7]) or set following some prejudices of the authors
(compare, e.g., [1]): in [1]

c = c(a) = 100, ξ = ξ(a) =
s

c(a)QAQB
(23)

and in [7]2

c = c(b) = 0.57, ξ = ξ(b) =
s

c(b)Q
2
>

. (24)

The constants c for Cases (c) and (d) were set to fit the σ’s
of Cases (b) and (a), respectively, for QA = QB = 4 GeV
and

√
s = 200 GeV. They come out to be: c(c) = 0.0055,

and c(d) = 2.5.
To estimate the role of c’s it is enough to use the

asymptotic formula (64) for QA = QB . We get

σγγ(a)
σγγ(b)

=
(
ξ(a)

ξ(b)

)∆p
√
aξ(a)

aξ(b)

(25)

where aξ is given below (19). Since, in the limit s → ∞,
O(log ξ(a)) = O(log ξ(b)), we have approximately

σγγ(a)
σγγ(b)

=
(
c(b)

c(a)

)∆p

. (26)

In Fig. 1 we present the σγγ ’s for Cases (a)–(d), for
QA = QB , setting the strong coupling constant α = 0.11,
hence ∆p = 0.3. The values of the constants c were taken
as in [1] (c(a) = 100) and [7] (c(b) = 0.57). The resulting

2 The authors are grateful to R. Peschanski and Ch. Royon
for providing them with c(b) of (24) which gives the fit of [7]
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Fig. 1. Total cross section in the dominant TT channel for
QA = QB = Q. The solid lines represent the results for Cases
(b) and (c), whereas the dashed lines show Cases (a) and (d).
Using the values of the scale parameter c given in the text, one
finds that Cases (b) and (c) coincide in the wide range of Q2.
The results for Cases (a) and (d) slightly differ for very large
Q2
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Fig. 2. Total cross section in the dominant TT channel for
1 ≤ ζ ≤ 6

cross sections differ appreciably, consistently with (26).
The dipole model results, (c) and (d), were fitted to the
predictions of (b) and (a), respectively, at the point Q2 =
16 GeV2 and

√
s = 200 GeV. One sees that they follow

closely the results of (a) and (b) for all considered values
of Q2 and

√
s.

In Fig. 2 the dependence on the asymmetry parameter
ζ = QB/QA is plotted. Other parameters are chosen as in
Fig. 1. One sees that the ζ-dependence is almost identical
for two versions of the dipole model ((c) and (d)) and the
symmetric proposal of [1,2]. The case (b) differs signifi-
cantly, however, from the others, giving a much stronger
dependence on ζ.

4 Conclusions

The predictions of the dipole model for the photon - pho-
ton cross section depend strongly on the scale determining
the length of the dipole cascade in the incident photons.
The scale suggested previously [1,2] gives substantially

smaller cross section than the one suggested by a fit of
the dipole model results to the proton structure function
[7]. On the other hand, the dependence of the cross section
on the ratio QB/QA for the two colliding photons turned
out to be the same for the two extreme cases of the dipole
model ((c), (d)) suggesting that it hardly depends on the
details of the model.

We conclude that future measurements of γ∗γ∗ cross
section may be useful in determining the length of the
dipole (gluon) cascade but, probably, not very helpful in
understanding the details of the dipole-dipole interaction.
This makes rather urgent the need of determining the rel-
evant scales from the higher-order perturbative calcula-
tions.

Acknowledgements. We would like to thank S. Brodsky, F.
Hautmann and R. Peschanski for correspondence and shar-
ing their independent results. We also thank W. Broniowski
for his helpful suggestions concerning the usage of the Monte-
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Appendix A Forward onium-onium amplitude
including the light-cone momentum fractions
dependencies

In this Appendix we give a direct derivation of the formula
for F (1) =

∫
d2bF (1)(b) in the form of a contour integral.

This derivation accommodates the option that the dipole-
dipole cross section takes the asymptotic form only above
some energy E0 of the slowest gluon.

We follow the notation of the main text: the subscripts
A and B refer to one of the virtual photons. For example,
xA is the transverse size of a dipole originating from the
virtual photon A. Also x< denotes the smaller of the two
sizes xA and xB . As before, rA,B and zA,B are the argu-
ments of the photon wave functions. Remember, however,
that z<

A,B are defined by (11). Consulting of [13] may also
be helpful.

We start from the formula (3) of Mueller’s paper [5]
which we write in the form

F (1) = πα2
∫
dxA

xA

dxB

xB
d2s σ(xA, xB)

×n(rA, xA, yA, s)n(rB , xB , yB , b− s) , (27)

where in the limit of high energy

σ(xA, xB) = 4
∫
dl

l3
[1 − J0(xAl)][1 − J0(xBl)]

= x2
<[1 + log(x>/x<)] , (28)

and

n(r, x, y, s) =
1
π2

∫
dγ

2πi
e∆(γ)y(1 − γ)2

(
r

x

)γ

I(r, x, s, γ) ,

(29)
with

I(r, x, s, γ) =
∫
d2w

(|s+ 1
2x− w||s− 1

2x− w|)γ−2

× (| 12r − w|| − 1
2r − w|)−γ

. (30)
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Following Mueller we also find (see [13])

y = log
(
z<

z0

)
, (31)

where z< is defined in (11) and z0 is the minimal fraction
of the onium energy which can be carried by a dipole in the
wave function (actually the minimal energy carried by one
of the gluons forming a dipole). Mueller does not explain
why the integration must stop at some z0 (except for the
obvious fact that for z0 = 0 the formula diverges). It is
clear, however, that without understanding this problem
there is no chance to estimate reasonably z0. Following
the arguments of [13] (e.g., (18) and (21)) we take

z0 =
p+
0

p+ =
τint

r2p+ , (32)

where p+
0 = 2E0, E0 being the energy of the slowest gluon.

When all this is substituted into (1) we obtain

F (1) =
α2

π3

∫
dγA

2πi
dγB

2πi

(
zA
<p

+
Ar

2
A

τint

)∆(γA)

(1 − γA)2 (33)

×
(
zB
<p

+
Br

2
B

τint

)∆(γB)

(1 − γB)2Ω(rA, rB , γA, γB) ,

where

Ω(rA, rB , γA, γB) =
∫
dxA

xA

dxB

xB
σ(xA, xB)

(
rA
xA

)γA

(34)

×
(
rB
xB

)γB

Ĩ(xA, xB , rA, rB , γA, γB) ,

with

Ĩ(xA, xB , rA, rB , γA, γB)

=
∫
d2b d2s d2w d2u

× (|b− s+ 1
2xB − u||b− s− 1

2xB − u|)γB−2

× (| 12rB − u|| − 1
2rB − u|)−γB

× (|s+ 1
2xA − w||s− 1

2xA − w|)γA−2

× (| 12rA − w|| − 1
2rA − w|)−γA

. (35)

After the change of variables, s − w → s, b − s − u → b,
(35) factorizes:

Ĩ(xA, xB , rA, rB , γA, γB) (36)
= I(xB , 2 − γB) I(xA, 2 − γA) I(rA, γA) I(rB , γB) ,

where

I(x, λ) =
∫
d2s(|s+ 1

2x||s− 1
2x|)−λ . (37)

I(x, λ) can be calculated using the technique of
Mueller. Here we give only the result. It reads

I(x, λ) = πx2(1−λ)H(λ) , (38)

where

H(λ) =
Γ 2(1 − 1

2λ)Γ (λ− 1)
Γ 2( 1

2λ)Γ (2 − λ)
. (39)

Consequently, we can write

Ω(rA, rB , γA, γB) = π4H(2 − γA)H(2 − γB)H(γA)H(γB)

×r2−γA

A r2−γB

B ω(γA, γB) , (40)

where

ω(γA, γB) =
∫ ∞

0

dxA

xA

dxB

xB
xγA−2

A xγB−2
B σ(xA, xB) . (41)

Integration over xA and xB is tedious but we do it
explicitly

ω(γA, γB)

=
∫ ∞

0

dxA

xA
xγA−2

A

[∫ xA

0

dxB

xB
(xB)γB (1 + log

xA

xB
)

+ x2
A

∫ ∞

xA

dxB

xB
(xB)γB−2(1 + log

xB

xA
)
]
. (42)

The integrals over dxB are well defined and are:∫ xA

0

dxB

xB
(xB)γB

(
1 + log

xA

xB

)
= xγB

A

1 + γB

(γB)2
, (43)

x2
A

∫ ∞

xA

dxB

xB
(xB)γB−2

(
1 + log

xB

xA

)
= xγB

A

3 − γB

(2 − γB)2
.

(44)
When this is substituted into (42) and integrated over dxA

we obtain

ω(γA, γB) = h(γB)
∫ ∞

0

dxA

xA
xγA+γB−2

A

=
h(γB)εγA+γB−2

2 − γA − γB
, (45)

where we have regularized the integral by taking the lower
limit to be ε. h(γB) is given by

h(γB) =
4

(2 − γB)2(γB)2
. (46)

Inserting (39) and (45) into (40) we obtain

(1 − γA)2(1 − γB)2Ω(rA, rB , γA, γB)

= π4r2−γA

A r2−γB

B

h(γB)εγAγB−2

2 − γA − γB
. (47)

Now, it turns out that the result for F (1) depends on the
order of integration over γ’s. The integral over γB in (33)
can be calculated just by taking the residue at the pole
(2 − γA − γB)−1. We obtain

F (1) = πα2rArB

∫
dγ

2πi
e∆(γ)Y

(
rA
rB

)1−γ

h(γ) , (48)
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where

Y = log(p+
Ap

+
Bz

A
<z

B
<r

2
Ar

2
B/τ

2
int) = log(szA

<z
B
<r

2
Ar

2
B/τ

2
int) ,
(49)

and s = p+
Ap

+
B is the total c.m. energy squared. The inte-

gration over γA can be similarly executed and one obtains
for F (1) again the result (48) but with rA, rB → rB , rA ex-
changed. However, (48) is in fact invariant under this ex-
change (see, e.g., the asymptotic form of F (1) (19) which
exhibits such an invariance).

Appendix B

As it was pointed out in [13], the dipole picture of BFKL
[3–5] gives some freedom of choice of the specific realiza-
tions of Y in (1). In this Appendix we give derivations of
σγγ for two cases of the explicitly symmetric (with respect
to the virtual photons A and B) expressions for Y .

We start with the case of τ2
int given by (13). Now F (1)

becomes

F (1) = πα2rArB

∫
dγ

2πi
(srArBz<

Az
<
B/c)

∆(γ)
(
rA
rB

)γ−1

h(γ) ,

(50)
From (5), (14), (15) and (16) it follows that the inte-
grations over rA, rB , zA, and zB factorize. The integrals
over rA and rB can be done with the help of the formula
6.576/4 of Gradstein and Ryzhik [15], and one obtains
after a few straightforward operations

σγγ =
8
π

(αNαeme
2
f )2

1
QAQB

×
∫

dγ

2πi
h(γ)

(
4s

cQAQB

)∆(γ)(
QB

QA

)1−γ

×ZL,T
A (γ)SL,T

A (γ)ZL,T
B (2 − γ)SL,T

B (2 − γ) ,(51)

where

ST (γ) =
4 − γ−
2 − γ−

SL(γ) , SL(γ) =
Γ 4(2 − 1

2γ−)
Γ (4 − γ−)

, (52)

ZT (γ) =
∫ 1

2

0
dz[z2 + (1 − z)2]z

1
2γ+−1(1 − z)

1
2γ−−1 , (53)

ZL(γ) = 4
∫ 1

2

0
dzz

1
2γ+(1 − z)

1
2γ− , (54)

and
γ± = γ ±∆(γ) . (55)

It is also of interest to have the asymptotic (i.e., s/c →
∞) expression for σγγ . This can be done through the sad-
dle point approximation around γ = 1 (from (2) we have
that χ′(1) = 0). We obtain

σγγ =
16
π

(αNαeme
2
f )2

1
QAQB

√
2aξ

π
ξ∆p

×e− 1
2aξ log2(QB/QA)[ZL,T (1)SL,T (1)]2 , (56)

where

ξ =
4s

cQAQB
, ∆P = ∆(γ = 1) ,

aξ = [7αNζ(3) log(ξ)/π]−1 , (57)

ST (1) = SL(1)
3 +∆P

1 +∆P
, SL(1) =

Γ 4( 3
2 + 1

2∆P )
Γ (3 +∆P )

, (58)

ZT (1) =
∫ 1

2

0
dz[z2 + (1 − z)2]z

1
2 (∆P −1)(1 − z)− 1

2 (∆P +1) ,

(59)

ZL(1) = 4
∫ 1

2

0
dzz

1
2 (1+∆P )(1 − z)

1
2 (1−∆P ) . (60)

To have a direct comparison of the dipole picture for-
mulae with those of [1,2] and with [7], we employ the
forms of Y which do not depend on r’s and z’s ((4) and
(7), (4) and (8)). Now all integrals over rA , rB , zA, zB

can be done analytically employing the formula 6.576/4
of [15] for the integrals over r’s, and the integrals over z’s
are now simple Euler β functions. We obtain

σγγ =
32α2N2α2

em(e2f )2

πQAQB
(61)

×
∫

dγ

2πi
ξ∆(γ)(QA/QB)1−γW

L,T
A (2 − γ)WL,T

B (γ)
(2 − γ)2γ2 ,

where

WT (γ) =
4 − γ

2 − γ

Γ 4(1 + 1
2γ)

Γ (2 + γ)
Γ (3 − 1

2γ)Γ (1 − 1
2γ)

Γ (4 − γ)
, (62)

WL(γ) = 2
Γ 4(1 + 1

2γ)
Γ (2 + γ)

Γ 2(2 − 1
2γ)

Γ (4 − γ)
. (63)

Setting ξ = s/(cQAQB) we obtain σγγ of [1]. The transi-
tion between (8) of [1] and (61) goes through the substi-
tution γ = 2γ′ which changes χ of (2) and transforms the
r.h.s. of (61) into the r.h.s. of (8) in [1], multiplied by a
factor 8

9 . This factor can be traced to an approximation
made in [5].

For the sake of completeness we give also the saddle
point approximation of (61)

σγγ =
16α2N2α2

em(e2f )2

πQAQB
ξ∆p

√
2aξ

π

×e− 1
2aξ log2(QA/QB)WA(1)WB(1) , (64)

where

WT (1) =
9π3

256
, WL(1) =

2π3

256
. (65)

Note that for the case discussed in [7] we have ξ = s/(cQ2
>)

(compare (8), and the same set of formulae for σγγ (61)–
(64)).
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